Clusters, Coxeter-sortable Elements and Noncrossing Partitions
نویسنده
چکیده
We introduce Coxeter-sortable elements of a Coxeter group W. For finite W, we give bijective proofs that Coxeter-sortable elements are equinumerous with clusters and with noncrossing partitions. We characterize Coxeter-sortable elements in terms of their inversion sets and, in the classical cases, in terms of permutations.
منابع مشابه
Sortable Elements in Infinite Coxeter Groups
In a series of previous papers, we studied sortable elements in finite Coxeter groups, and the related Cambrian fans. We applied sortable elements and Cambrian fans to the study of cluster algebras of finite type and the noncrossing partitions associated to Artin groups of finite type. In this paper, as the first step towards expanding these applications beyond finite type, we study sortable el...
متن کاملClusters, Noncrossing Partitions and the Coxeter Plane Nathan Reading
The present research is a contribution to W -Catalan combinatorics, which concerns generalizations of objects counted by the Catalan number to an arbitrary finite Coxeter group W. Triangulations of a polygon are a special case of the combinatorial clusters appearing in the theory of cluster algebras of finite type. Planar diagrams analogous to triangulations encode the combinatorics of clusters...
متن کاملNoncrossing partitions and representations of quivers
We situate the noncrossing partitions associated to a finite Coxeter group within the context of the representation theory of quivers. We describe Reading’s bijection between noncrossing partitions and clusters in this context, and show that it extends to the extended Dynkin case. Our setup also yields a new proof that the noncrossing partitions associated to a finite Coxeter group form a latti...
متن کاملNon-crossing Partitions, Non-nesting Partitions and Coxeter Sortable Elements in Types a and B
First, we investigate a generalization of the area statistic on Dyck paths for all crystallographic reflection groups. In particular, we explore Dyck paths of type B together with an area statistic and a major index. Then, we construct bijections between non-nesting and reverse non-crossing partitions for types A and B. These bijections simultaneously send the area statistic and the major index...
متن کاملNoncrossing Partitions, Clusters and the Coxeter Plane
When W is a finite Coxeter group of classical type (A, B, or D), noncrossing partitions associated to W and compatibility of almost positive roots in the associated root system are known to be modeled by certain planar diagrams. We show how the classical-type constructions of planar diagrams arise uniformly from projections of smallW -orbits to the Coxeter plane. When the construction is applie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005